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Abstract

We present three modifications of well-
established automatic machine translation
evaluation measures, to improve correlation
between those measures and human evalua-
tion. Following Lin & Och, we present an
improved version of the BLEU score, which
uses a smoothed geometric mean for combin-
ing different n-gram precisions. We use seg-
ment boundary markers to increase the weight
of words near the segment boundaries in the
BLEU score. Our second MT evaluation mea-
sure is a variant of the WER which allows for
block movements, but does not demand com-
plete and disjoint coverage of the source sen-
tence. As this might be problematic if MT sys-
tems are tuned on this score, we later investi-
gate a linear combination of this measure with
PER. Finally, we describe an edit distance
similar to TER, which also allows for block re-
ordering. Our measure uses a full search, but
with the constraint that block operations must
be bracketed. We describe this measure us-
ing a Bracketing Transduction Grammar, and
sketch a polynomial-time algorithm for its cal-
culation. We also modify the WER-like mea-
sures such that they use word-dependent sub-
stitution costs instead of fixed ones to model
the similarity between words. Experimen-
tal comparison of these measures show that
our new measures correlate significantly better
with human judgment than the original mea-
sures.

1 Introduction

For a couple of reasons, automatic evaluation of Ma-
chine Translation (MT) systems is a difficult task,

mostly because it is difficult to define when a trans-
lation is good, and when it is bad. Or which of
two given translations is better, and which one is
worse. The main reason for this are ambiguities in
natural languages: Usually, there is more than one
correct translation for a source sentences; there are
ambiguities in the choice of synonyms as well as in
the order of the words. Because of the difficulty of
this task, a multitude of automatic MT evaluation
measures have been defined over the last couple of
years. Some of these measures have become well-
established, for example BLEU or TER, others are
only of medium or small significance. We expect
that in the context of NIST’s Metrics MATR eval-
uation, more measures will be added to the pool of
evaluation measures.

In a few previous papers, the proposed measures
seemed to be more of theoretical interest than of
practical use: While they certainly emphasis impor-
tant linguistic effects, it is not investigated system-
atically in how far these effects play a role in the
difference in quality in different MT systems. Some
other proposed evaluation measures seemed to fo-
cus on specific properties and features of the previ-
ously generated translations they are trained or opti-
mized on, which can (but does not need to) lead to
evaluation measures which are basically classifiers
dividing previously good from previously poor sys-
tems, or “easy” from “difficult” source sentences. If
measures with this property are used to tune a typ-
ical statistical MT system, it can sometimes be ob-
served that the MT system learns to “play” against
this, and might even learn to produce translations
which show the “good” features without actually
being good translations. For example, Rosti et al.
(2007) report such an effect. This is not to say



that all new measures share these problems, nor that
there is no need for MT evaluation measures which
go beyond lexical comparison – quite the opposite.
But these issues were the motivation for us to start
from established evaluation measures, with known
properties especially with regard to tuning, and alter
them at a few selected points to improve their corre-
lation with human judgment.

This paper is organized as follows: In Section 2,
we describe some modifications to the BLEU score,
following Lin and Och (2004), and Leusch et al.
(2005). We present a simple variant of WER in
Section 3, called CDER, which allows for block
transposition similar to TER, following Leusch et al.
(2006). This measure can be efficiently calculated
exactly, without having to resort to shift heuristics
or greedy search as in TER. The tradeoff is that
this measure by itself measures basically recall, not
precision. To overcome this bias, we will later pro-
pose a linear combination of this measure and PER

in Section 6. Before this, in Section 4, we describe
another variant of TER which can be exactly cal-
culated in polynomial time, this time by restricting
possible shifts to ITG constrains. This method fol-
lows Leusch et al. (2003). We call this measure IN-
VWER. In Section 5, we introduce two simple meth-
ods following Leusch et al. (2006) to improve edit-
operation–based measures like PER, WER, TER, and
CDER/INVWER by taking into account the lexical
difference of words in a substitution operation. Af-
ter an experimental evaluation of our three proposed
evaluation measures in Section 7, we conclude this
paper in Section 8.

2 BLEUSP

BLEU (Papineni et al., 2001) is a precision mea-
sure based on n-gram count vectors. The precision
is modified such that multiple references are com-
bined into a single n-gram count vector. Multiple
occurrences of an n-gram in the candidate sentence
are counted as correct only up to the maximum oc-
currence count within the reference sentences. Typ-
ically, unigrams, bigrams, trigrams, and four-grams
are used for BLEU; their four precisions are com-
bined using the geometric mean.

To avoid a bias towards short candidate sentences
consisting of “safe guesses” only, sentences shorter

than the reference length will be penalized with a
brevity penalty.

In the original BLEU definition there is no
smoothing for the geometric mean. This has the
disadvantage that the whole score becomes zero al-
ready if the four-gram precision is zero, which es-
pecially happens often with short or difficult trans-
lations. As a result, sentence-level scores are often
quite noisy, and not usable for evaluation. To allow
for sentence-wise evaluation, Lin and Och (2004)
define the BLEUS measure, which is basically BLEU

where all bi-, tri-, and four-gram counts are initial-
ized with 1 instead of 0. We have adopted this tech-
nique for this study, as experiments showed a clear
improvement over BLEU in terms of correlation with
human judgment on segment and document level;
the effect on system level scores is negligible due
to the already high n-gram counts here.

In our experiments, BLEU and BLEUS lack in an-
other minor point: The position of a word within a
sentence can be quite significant for the correctness
of the sentence. WER, TER, and CDER/INVWER

(Sections 3 and 4) explicitly take into account the
ordering of the words in a sentence. This is not the
case with BLEU, although the order of inner words
is regarded implicitly by n-gram overlap. To model
the position of words at the initial or the end of a
sentence, we enclose the sentence with artificial sen-
tence boundary tokens.

For example, the sentence A B C is considered
to consist of

• the unigrams [A], [B], and [C],
• the bigrams [<s> A], [A B], [B C], and
[C </s>],
• the trigrams [<s> <s> A], [<s> A B],
[A B C], [B C </s>], and
[C </s> </s>],
• etc.

In the measure we denote as BLEUSP, all n-
grams are counted like this for all candidate and ref-
erence segments, and for these counts, the BLEUS
score is calculated.

3 CDER

As translations of sentences are often ambiguous in
the order of phrases, reorderings of whole blocks of



we

met

at

the

airport

at

seven

o’clock

.

we met
at seven

o’clock

on the
airport

.have

candidate

re
fe

re
nc

e

deletion

insertion

substitution

identity best path

start/
end node

long jump

block

Figure 1: Example of a long jump alignment grid. All
possible deletion, insertion, identity and substitution op-
erations are depicted. Only long jump edges from the best
path are drawn.

words should not be penalized too hard by an MT
evaluation measure. WER, which is based on the
classical Levenshtein distance (Levenshtein, 1966),
penalizes block reorderings rather hard – each word
that has been shifted usually needs to be deleted in
its old position, and inserted in its new position. One
approach here is to extend the Levenshtein distance
by an additional operation, namely block movement
(or shift, as it is called in TER (Snover et al., 2005)).
Note that the number of blocks in a sentence is equal
to the number of gaps among the blocks plus one.
Thus, the block movements can equivalently be ex-
pressed as long jump operations that jump over the
gaps between two blocks. The costs of a long jump
are considered constant. The blocks are read in the
order of one of the sentences. These long jumps
are combined with the “classical” Levenshtein edit
operations, namely insertion, deletion, substitution,
and the zero-cost operation identity. The resulting
long jump distance dLJ gives the minimum number
of operations which are necessary to transform the
candidate sentence into the reference sentence. Like
the Levenshtein distance, the long jump distance can

be depicted using an alignment grid as shown in Fig-
ure 1: Here, each grid point corresponds to a pair of
inter-word positions in candidate and reference sen-
tence, respectively. dLJ is the minimum cost of a
path between the lower left (first) and the upper right
(last) alignment grid point which covers all refer-
ence and candidate words. Deletions and insertions
correspond to horizontal and vertical edges, respec-
tively. Substitutions and identity operations corre-
spond to diagonal edges. Edges between arbitrary
grid points from the same row correspond to long
jump operations. It is easy to see that dLJ is sym-
metrical.

Lopresti and Tomkins (1997) showed that find-
ing an optimal path in a long jump alignment grid is
an NP-hard problem. Our experiments showed that
the calculation of exact long jump distances thus be-
comes impractical for sentences longer than about
20 words.

A possible way to achieve polynomial run-time
is to restrict the number of admissible block per-
mutations, for example as in Section 4. Alterna-
tively, a heuristic or approximative distance can be
calculated, as in GTM (Turian et al., 2003). An im-
plementation of both approaches at the same time
can be found in TER. In the following section we
will present another approach which has a suitable
run-time, while still maintaining completeness of
the calculated measure. The idea of the proposed
method is to drop some restrictions on the alignment
path.

The long jump distance as well as the Levenshtein
distance require both reference and candidate trans-
lation to be covered completely and disjointly. When
extending the metric by block movements, we drop
this constraint for the candidate translation. That is,
only the words in the reference sentence have to be
covered exactly once, whereas those in the candi-
date sentence can be covered zero, one, or multiple
times. Dropping the constraints allows for an effi-
cient computation of the distance. We drop the con-
straints for the candidate sentence and not for the
reference sentence because we do not want any in-
formation contained in the reference to be omitted.
Moreover, the reference translation will not contain
unnecessary repetitions of blocks.

The new measure, which we call CDER, can thus
be seen as a measure oriented towards recall, while



measures like BLEU are guided by precision. The
CDER is based on the CDCD distance1 introduced
by Lopresti and Tomkins (1997). The authors show
that the problem of finding the optimal solution can
be solved in O(I2 · J) time, where I is the length
of the candidate sentence and J the length of the
reference sentence. Within this paper, we will refer
to this distance as dCD . In (Leusch et al., 2006) we
showed how it can be computed in O(I · J) time
using a modification of the Levenshtein algorithm.

We also studied the reverse direction of the de-
scribed measure; that is, we dropped the coverage
constraints for the reference sentence instead of the
candidate sentence. Additionally, the maximum of
both directions has been considered as distance mea-
sure.

4 INVWER

Another approach to circumvent the NP-hardness of
the block reordering problem is to reduce the search
space by restricting the number of admissible block
permutations:

4.1 Bracketed transpositions

In order to reduce the complexity of the search, we
restrict consequent block transpositions to be brack-
eted, i.e. the two blocks to be swapped must both
lie either completely within or completely out of
any blocks from previous operations. The following
examples illustrate admissible and forbidden block
transpositions. The brackets indicate the blocks
that are swapped. In the transformation of ABCD
into CDBA in (1), only transpositions within these
blocks are performed. In (2), the transformation
from BCDA into BDAC crosses the blocks BCD
and A from the previous transposition and is there-
fore forbidden.

1. Admissible transpositions:
(A)(B C D)→ ((B) (C D))(A)

→ ((C D) (B))(A)
2. Forbidden transpositions:

(A)(B C D)→ (B C D)(A)
6→ (B)(D A)(C)

A concise definition of the Levenshtein and block
transposition (shift) edit operations can be given us-

1C stands for cover and D for disjoint. We adopted this
notion for our measures.

ing bracketing transduction grammars.

4.2 Bracketing Transduction Grammars

A bracketing transduction grammar (BTG) (Wu,
1995) is a pair-of-strings model that generates two
output strings s and t. It consists of one common
set of production rules for both output strings. A
BTG always generates a pair of sentences. Termi-
nals are pairs of symbols, where each may be the
empty word ε.

Concatenation of the terminals and nonterminals
on the right hand side of a production rule is either
straight, denoted by [·], or inverted, denoted by 〈·〉.
In the former case, the parse subtree is to be read
left-to-right in both s and t, and in the latter case it
is to be read left-to-right in s and right-to-left in t. A
BTG contains only the start symbol S and one non-
terminal symbol A, and each production rule con-
sists of either a string of As or a terminal pair.

Using the BTG formalism, we can describe the
edit operations Inversion (= Shift), Substitution,
Deletion, Insertion, as production rules, associated
with a cost function c:

1. Concatenation: A→ [AA]
with c([αβ]) = c(α) + c(β)

2. Inversion: A→ 〈AA〉
with c(〈αβ〉) = c(α) + c(β) + cINV

3. Identity: A→ x/x
with c(x/x) = 0

4. Substitution: A→ x/y, where x 6= y
with c(x/y) = cSUB

5. Deletion: A→ x/ε
with c(x/ε) = cDEL

6. Insertion: A→ ε/y
with c(ε/y) = cINS

7. Start: S → A; S → ε/ε
with c(ε/ε) = 0

We define the inversion edit distance between a
candidate sentence eI

1 and a reference sentence ẽJ
1 to

be the minimum cost of the set T (sI
1, t

J
1 ) of all parse



trees generated by the BTG for this sentence pair:

dinv(sI
1, t

J
1 ) := min

τ∈T (sI
1,tJ1 )

c(τ) (1)

Note that, without the inversion rule, the minimum
production cost equals the Levenshtein distance.

We use this distance to define our error mea-
sure, the Inversion Word Error Rate (INVWER), by
normalizing it by the reference length. The dis-
tance can be calculated by an algorithm similar to
a 2-dimensional CYK algorithm in time O(I3J3)
and space O(I2J2), as described in (Leusch et al.,
2003). Because the algorithm has basically a time
complexity in Θ(I6) if I ≈ J , it can become quite
slow for long sentences. Because of this, we split
sentences longer than 30 words, parallel in candi-
date and reference on PER-optimal split points.

5 Word-dependent Substitution Costs

All automatic error measures which are based on the
edit distance (for example WER, PER, TER, CDER,
INVWER) assume fixed costs for the substitution of
words. However, this is counter-intuitive, as replac-
ing a word with another one which has a similar
meaning will rarely change the meaning of a sen-
tence significantly. On the other hand, replacing the
same word with a completely different one probably
will. Therefore, it seems advisable to make substi-
tution costs dependent on the semantical and/or syn-
tactical dissimilarity of the words. METEOR (Baner-
jee and Lavie, 2005) uses a similar idea of grad-
uated similarity between words (exact match, stem
match, WORDNET match), but instead of assuming
different costs, it uses a matching procedure which
matches the most similar words first. The MT sys-
tem combination approach of Ayan et al. (2008) uses
WORDNET matches as well as exact matches, and
uses different costs for these matches.

For algorithmic reasons, it is helpful to demand
that an arbitrary substitution cost function cSUB for
two words e, ẽ meets the following requirements:

1. cSUB depends only on e and ẽ.

2. cSUB is a metric; especially

(a) The costs are zero if e = ẽ, and larger than
zero otherwise.

(b) The triangular inequation holds: it is al-
ways cheaper to replace e by ẽ than to re-
place e by e′ and then e′ by ẽ.

3. The costs of substituting a word e by ẽ are al-
ways equal or lower than those of deleting e
and then inserting ẽ. In short, cSUB ≤ 2.

Under these conditions the algorithms for WER

and CDER can easily be modified to use word-
dependent substitution costs. For example, the only
necessary modification in the CDER algorithm is to
replace cSUB by cSUB(e, ẽ) in Subsection 4.2.

For PER, it is no longer possible to use a linear
time algorithm in the general case. Instead, we use
a modification of the Hungarian algorithm (Knuth,
1993).

The question is now how to define the word-
dependent substitution costs. A pragmatic approach
is to compare the spelling of the words to be substi-
tuted with each other. The more similar the spelling
is, the more similar we consider the words to be,
and the lower we want the substitution costs between
them to be. In English, this works well with similar
tenses of the same verb, or with genitives or plurals
of the same noun. Nevertheless, a similar spelling
is no guarantee for a similar meaning, because pre-
fixes such as “mis-”, “in-”, or “un-” can change
the meaning of a word significantly.

We have studied two different approaches to use
the similarity in the spelling of two words as a sub-
stitution cost:

5.1 Character-based Levenshtein Distance

An obvious way of comparing the spelling is the
Levenshtein distance. Here, words are compared
on character level. To normalize this distance into
a range from 0 (for identical words) to 1 (for com-
pletely different words), we divide the absolute dis-
tance by the length of the Levenshtein alignment
path.

5.2 Common Prefix Length

Another character-based substitution cost function
we studied is based on the common prefix length
of both words. In English, different tenses of the
same verb share the same prefix; which is usually the
stem. The same holds for different cases, numbers



Table 1: Example of word-dependent substitution costs.

Levenshtein prefix

e ẽ distance substitution cost similarity substitution cost

usual unusual 2 2
7 = 0.29 1 1− 1

6 = 0.83

understanding misunderstanding 3 3
16 = 0.19 0 1.00

talk talks 1 1
5 = 0.20 4 1− 4

4.5 = 0.11

and genders of most nouns and adjectives. How-
ever, it does not hold if verb prefixes are changed
or removed. On the other hand, the common pre-
fix length is sensitive to critical prefixes such as
“mis-” for the same reason. Consequently, the
common prefix length, normalized by the average
length of both words, gives a reasonable measure for
the similarity of two words. To transform the nor-
malized common prefix length into costs, this frac-
tion is then subtracted from 1. An example for these
two approaches is shown in Table 1.

6 Linear Combination of evaluation
measures

An interesting topic in MT evaluation research is
the question whether different MT evaluation mea-
sures can be combined into a consensus score, which
hopefully shows a better correlation with the target
– human evaluation – than the single measures. Re-
cently, Albrecht & Hwa (2007) have investigated on
the combination of up to 53 measures and features
in a regression model and a classifier as evaluation
measure. Also, a linear combination of BLEU and
TER has been successfully used for tuning MT sys-
tems (Mauser et al., 2008; Rosti et al., 2008). In our
approach, we only are interested in the linear combi-
nation of two MT evaluation measures, particularly
the combination of CDER and PER. We expect this
combination to have a higher correlation with hu-
man evaluation than the measures alone. CDER (as
opposed to PER) has the ability to reward correct lo-
cal ordering, whereas PER (as opposed to CDER)
penalizes overly long candidate sentences. The two
measures were combined with linear interpolation.
In order to determine the weights, we performed
data analysis on seven different corpora in (Leusch
et al., 2006). The results were consistent across all
different data collections and language pairs: a lin-

Table 2: Corpus statistics of the MATR MT06 corpus
that was used for experimental evaluation of the proposed
measures.

Language pair (Arabic)–English
Genre Newswire texts
MT systems 8
Documents 25
Segments 249
References/seg 4
Hyp. length 32.5
Ref. length 34.3
Human evaluation adequacy (1. . . 7)

ear combination of about 60% CDER and 40% PER

has a significantly higher correlation with human
evaluation than each of the measures alone. Conse-
quently, we chose these weights for the NIST Met-
rics MATR evaluation as well.

7 Experimental results

For an experimental comparison of the different
evaluation measures, we calculated the correlation
between these measures and human evaluation, in
particular the “adequacy”, for the MT06 corpus pro-
vided by NIST and LDC for the Metrics MATR
2008 evaluation (NIST, 2008). This corpus consists
of translations of 25 Arabic newswire documents
into English, as generated by 8 MT systems that
participated in NIST’s 2006 MT evaluation. Some
statistics on this corpus are listed in Table 2.

Within NIST’s Metrics MATR evaluation, another
corpus was provided to participants for metrics eval-
uation. But due to its extremely limited size – a sin-
gle document consisting of 16 segments – correla-
tion results generated on this corpus are quite noisy,
and of limited significance.



Table 3: Pearson’s r and Kendall’s τ (absolute) between adequacy and automatic evaluation measures on different
levels of the MATR MT06 data.

Measure r τ τ̄
seg doc sys seg doc sys sys/seg sys/doc

WER 0.621 0.853 0.953 0.503 0.599 0.571 0.584 0.641
WER +c(w) 0.626 0.860 0.954 0.506 0.608 0.571 0.580 0.653
PER 0.597 0.852 0.958 0.482 0.588 0.643 0.576 0.644
PER +c(w) 0.586 0.858 0.966 0.483 0.590 0.714 0.559 0.646
BLEU (min Ref) 0.592 0.844 0.943 0.476 0.580 0.571 0.578 0.588
BLEU (avg Ref) 0.598 0.857 0.955 0.483 0.602 0.643 0.587 0.612
BLEUS 0.672 0.860 0.955 0.541 0.606 0.643 0.590 0.615
BLEUSP 0.687 0.877 0.961 0.542 0.613 0.643 0.609 0.618
TER 0.597 0.849 0.957 0.495 0.602 0.571 0.595 0.667
INVWER 0.638 0.867 0.958 0.509 0.606 0.571 0.583 0.643
INVWER +c(w) 0.649 0.871 0.958 0.512 0.606 0.571 0.573 0.638
CDER +c(w) 0.708 0.891 0.973 0.558 0.643 0.714 0.623 0.671
CDER + PER +c(w) 0.690 0.885 0.975 0.543 0.632 0.714 0.610 0.679

+c(w) denotes measures using word dependent substitution costs.
“seg” is on segment level, “doc is on document level, “sys” is on system level.
“sys/seg” is average system ranking per segment, “sys/doc” is average system ranking per document.

We investigated two different aspects of auto-
matic evaluation measures – their ability to give a
reliable absolute estimate of their translation qual-
ity, and their ability to rank different translations
with regard to their quality. As target for this, we
chose the adequacy score, an integer value between
1 and 7, that was assigned to all translations in the
corpus by a human judge. We measured the abso-
lute prediction as Pearson’s correlation coefficient r
(Casella and Berger, 1990), and the ranking capabil-
ity as Kendall’s τ (Kendall, 1970). The latter has
the big advantage over other coefficients like Spear-
man’s ρ that it handles ties in a well-defined and rea-
sonable manner. As there are only seven different
outcomes for adequacy, but up to several thousand
samples, ties are extremely frequent in these experi-
ments.

We measured both r and τ on three levels of gran-
ularity – the system level, that is comparing the ac-
cumulated scores of all documents per system, the
document level, and the segment level.

Comparing the scores of different systems at the
same time as comparing different (source) docu-
ments or even segments raises the problem that the
measure is used at the same time to compare the out-

put of different MT systems, and to compare the out-
put for different source sentence. In other words, an
evaluation metric gets a “bonus” in terms of correla-
tion already if it is able to divide easy from difficult
source sentences (which typically have good and bad
translations respectively), as well as for dividing dif-
ferent MT systems. In practice, we are mostly in-
terested in the latter: Our test corpus then is fixed,
and there might be more efficient methods for esti-
mating the “difficulty” of a source sentence. We use
the MT evaluation measure here because we want to
compare the actual MT systems, and not the source
sentences, and the MT evaluation measure we chose
should respect this.

To divide these two effects in our experiments,
we calculated the rank correlation (using τ ) over the
different MT system for a fixed source segment or
document respectively, and then calculated the arith-
metic average over the different τ for the individual
source segments (or documents).2 We denote this
averaged correlation coefficient as τ̄ . Our experi-
mental results are listed in Table 3.

2This is another advantage of τ over r or ρ – in our under-
standing, it seems at least questionable whether calculating the
arithmetic average would be a valid procedure for the latter two.



7.1 BLEU and BLEUSP
Using the average reference length instead of the
minimum reference length brings a very small im-
provement in correlation with human judgment on
segment level, and a slightly larger improvement on
document and system level. The largest improve-
ment for BLEU-like measures on the segment level
comes from Lin & Och’s smoothed geometric mean
in BLEUS: r raises from .60 to .67, τ from .48 to
.54, even though the ability to rank systems on the
sentence or document level hardly increases. This
can be increased using the segment boundary to-
kens: r improves from .67 to .68, and τ̄seg from .59
to .61.

7.2 TER and INVWER

Even though TER and INVWER are structurally very
similar, we see that INVWER has a significantly
higher correlation than TER with human evalua-
tion on segment and document level, even though
it seems that TER has a better capability to actually
judge between MT systems on smaller levels. Using
word-dependent substitution costs brings small im-
provements on the segment level, but seems to have
a slightly negative effect on the ability to differenti-
ate between systems.

7.3 Word-dependent substitution costs
Compared with our results in (Leusch et al., 2006),
we see only small improvements, or for PER even
a very small deterioration if we use word-dependent
substitution costs on this corpus, both on segment
and system level. For our final submission, we made
the substitution costs dependent on the common pre-
fix length in out Metrics MATR submission.

7.4 CDER and linear combination of
evaluation measures

CDER, as a pure recall measure, shows again the
highest correlation of all evaluation measures, on
segment, document, and system level. Unfortu-
nately, it is unwise to use a purely recall-oriented
measure in actual research. This is because MT sys-
tems tuned for such a measure, either directly or in-
directly, tend to produce overly long sentences con-
taining many unnecessary or even wrong insertions.
To avoid this, and because doing so showed a signif-
icant increase in correlation with human judgment

on most of our development corpora, we use a lin-
ear combination of CDER (with a weight of .6) and
PER (.4), both using word dependent substitution
costs. Unfortunately, this combined measure shows
a slightly lower correlation with human judgment
on the sentence level than pure CDER. But even
though, this measure has a significantly higher cor-
relation on all levels than the original BLEU or TER

score, and is better than or on par with even our im-
proved scores INVWER and BLEUSP.

8 Conclusions

In this paper we have presented three improved
evaluation measures for MT, based on the well-
established and understood measures TER, BLEU,
and a variant of WER and PER. While not exactly
being revolutionary, our measures show a signifi-
cant improvement in correlation with human judg-
ment compared with the original measures. We fur-
ther refined the way this correlation is measured,
taking into account typical statistical and data ef-
fects when looking evaluating MT evaluation mea-
sures. We consider our results to be of importance
because a multitude of new, sometimes “revolution-
ary” MT evaluation measures have been proposed
over the last years, sometimes to be compared only
with BLEU or TER in terms of correlation, even for
applications where these baseline measures are not
well suited for. One of our scientific contributions
in this paper is to show that even with these only al-
terations and additions, we can have a significantly
higher correlation with human judgment. Along the
way, we hope to raise the baseline for new evalua-
tion measures significantly.

The measures described in this paper, as well as
some additional measures, have been implemented
by us under a python command line tool called
PyET. The implementation uses shared libraries
written in C++ for performance. Please contact the
first author via E-Mail, or visit his web site3 to ob-
tain a copy of this software.
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